GGSIPU Mathematics 2005

1. The equation of the plane through the intersection of the planes x+y+z = 1 and 2x+3y-z+4 = 0 and parallel to x-axis is :

a y -3z+6 = 0 b 3y -z+6 = 0 c y+3z+6 5 = 0 (dsy 3y-2z+6 = 0 the line $\frac{x-1}{2} = \frac{y-3}{2} = \frac{y-2}{2}$ measure

2. The distance of the point 3,8,2 from the line $\frac{x-1}{2} = \frac{y-3}{4} = \frac{y-2}{3}$ measured parallel to the plane 3x+2y-2z+15 = 0 is :

a 2	b 3	3
c 6	d	<u>19</u> 2

3. Let 3,4, -1 and -1,2,3 are the end points of a diameter of sphere. Then the redius of the sphere is equal to :

a1 b2 c3 d9

4. If A,B,C,D are the points 2,3, -1,3,5, -3,1,2,3,3,5,7respectively,Then the angle between AB and CD is :

a $\frac{\pi}{2}$ b $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ d $\frac{\pi}{6}$ 5. If $u = log\left(\frac{x^2 + y^2}{x + y}\right)$, then the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ is : a -1 b 0 c 1 d 2

6. A five digits number is formed by writing the digits 1,2,3,4,5 in a random order without repetitions. Then the probability that the number is divisible by 4, is :

a3/5	b 18/5
c 1/5	d 6/5

7. Two persons A and B takes turns In throwing a pair of dice. The first person to throw 9 from both dice will be awarded the price. If A throws first, then the probability that B wins the game , is :

- c 8/9 d 1/9
- 8. The probability that in year of the 22nd century chosen at random, then there will be 53 Sundays, is :

a 3/28	b 2/28	
c 7/28	d 5/28	

9. The standard deviation of a variable x is 10. Then the standard deviation of 50+5x is :

a 50	b 550
c 10	d 0.98

10. The octal equivalent of the decimal number 0.3125 is :

a 0.24	b 0.42
c 0.39	d 0.98

11. The hexadecimal equivalent of the binary number 111100001010001 is

a 15C3	b C351		
c 3C51	d C315		

12. A real value of x will satisfy the equation $\left(\frac{3-4lx}{3+4lx}\right) = \alpha - I\beta \alpha$ and β are real, If :

- **a** $\alpha^2 \beta^2 = -1$ **b** $\alpha^2 \beta^2 = 1$ **c** $\alpha^2 + \beta^2 = 1$ **d** $\alpha^2 - \beta^2 = 2$
- 13. If ω is a complex cube root of unity, then the value of

 $\frac{p+q\omega+r\omega^2}{r+p\omega+q\omega^2} + \frac{p+q\omega+r\omega^2}{q+r\omega+p\omega^2} \quad p,q,r \in \mathbb{R} \text{ is equal to :}$ $a \quad 0 \qquad b \quad 1$ $c \quad -1 \qquad d \quad 2$

14. If P,Q,R,S are represented by the complex numbers 4 + I,1 + 6 I,-4 + 3i,-1 -2i respectively,then PQRS is a :

```
a rectangle b square
c rhombus d parallelogram
```

15. If n is a positive integer, then $1+i^{n} + 1 - i^{n}$ is equal to :

a
$$\sqrt{2}^{n-2} \cos\left(\frac{n\pi}{4}\right)$$

b $\sqrt{2}^{n-2} \sin\left(\frac{n\pi}{4}\right)$
c $\sqrt{2} |^{n+2} \cos\left(\frac{n\pi}{4}\right)$
d $\sqrt{2}^{n+2} \sin\left(\frac{n\pi}{4}\right)$

16. The number of ways in which 9 persons can be divided into three equal groups is :

а	1680	b 840
с	560	d 280

17. A dictionary is printed consisting of 7 letters words only that can be made with a letters of the word CRICKET. If the words are printed are alphabetical order is an ordinary dictionary, then the number of words are before the word CRICKET is :

а	530	b 480
с	531	d 481

18. If the sum of the coefficient in the expansion of $x+y^{-n}$ is 1024, then the value of the greatest coefficient in the expansion is :

а	356	b 252
С	210	d 120

19. The value of the determinant

10 11 12	11 12 13	12 13 14	is :			
				a 210!11	b 2	10 ! 13 !

b 2 10 ! 11 ! 12 ! d 2 11 ! 12 ! 13 !

20. If A and B are 3x3 matrices such that AB = B and BA = A, than :

```
a A ^{2} = A and B^{2} \neq B
b A ^{2} \neq A and B^{2} = B
c A ^{2} = A and B^{2} = B
d A ^{2} \neq A and B^{2} \neq B
```


21. If the points $xx_{1y}y_{1,i}(x_{2,}y_{2})$ and $x_{3,}y_{3}$ are collinear, then the rank of the matrix

 $\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$ will always be less than : a 2 b 3 c 1 d none of these

22. The system of equations; x+y+z = 6, x+2y+3z = 10, $x+2y+\lambda z = 6$ has number solution for :

 $a \quad \lambda = 3, \mu = 10 \qquad b \quad \lambda = 3, \mu \neq 10$ $b \quad \lambda = 3, \mu \neq 10$ $c \quad \lambda \neq 3, \mu \neq 10 \qquad d \text{ none of these}$ 23. If A = $\begin{vmatrix} \sin(\theta + \alpha & \cos(\theta + \alpha) & 1 \\ \sin(\theta + \beta & \cos(\theta + \beta) & 1 \\ \sin(\theta + \gamma & \cos(\theta + \gamma) & 1 \end{vmatrix}$ Then :

a A=0 for all θ b A is a odd function of θ c A=0 for $\theta = \alpha + \beta + \gamma$ d A is a independent of θ

24. An investigator interviewed 100 students to determine the performance of three drinks milk,coffy and tea;20 students take milk and coffee ,30 students take coffee and tea,25 students take milk and tea,12 students take milk only,5 students take coffee only and 8 students take tea only.Then the number of students who did not take any drinks any of three, is :

a 10	b 20
c 25	d 30

25. Let Y={1,2,3,4,5}, A={1,2}, B={3,4,5} and ϕ denots null set.If AxB denotes Cartesian product of the sets A and B,then YxA \bigcirc yxB is :

аY	bΑ		
b B	d ϕ		

26. let A={2,3,4,5,.....,16,17,18}.Let ≈ be the equivalence relation on AxA Cartesian product of A and A,defined by a,b ≈ c,d if ad=bc,then the number of ordered pairs of the equivalence class of 3,2 is
:

a4 b5 c6 d7

27. A question 'who have studied Physics?' was asked to three students A,B and C.The question was answered correctly as it is true that If A studied Physics,then B also studied Physics but it is false statement that if C studied Physics,then B also studied physics.Then physics was studied by :

a both A and B	b only A
c only B	d only C

28. If a,b be two fixed positive integers such that $f(a+x=b+[b^3+1-3b^2fx+3b{fx}] - {f(x]^3}^{1/3}$ for all real x,then f(x is a periodic function with period:

а	а	b	2 a
c l	b	d	2b

29. The domain of the function $f(x = \log_3 + x x^2 - 1)$ is :

a -3,-1
$$\cup$$
 1, ∞
b [-3,-1] \cup [1, ∞
c -3,-2 \cup -2,-1 \cup 1, ∞
d [-3,-2 \cup -2,-1 \cup 1, ∞

30. The value of $\cot 70^{\circ} + 4\cos 70^{\circ}$ is :

- a 1/√3 b √3 c 2 √3 d½
- **31.** The equation of sinx+siny+sinz = -3 for $0 \le x \le 2\pi$, $0 \le y \le 2\pi$, $0 \le z \le 2\pi$ has :

a one solution
b two sets of solution
c four sets of solution
d no solution

32. If $\theta = \sin^{-1} x + \cos^{-1} x - \tan^{-1} x, x \ge 0$ then the smallest interval in which θ lies is :

a
$$\frac{\pi}{2} \le \theta \le \frac{3\pi}{4}$$
 b $0 \le \theta \le \frac{\pi}{4}$
c $-\frac{\pi}{4} \le \theta \le 0$ d $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$

33. Let A,B and C are the angles Of a plain triangle and $\tan\left(\frac{A}{2}\right) = \frac{1}{3}$, $\tan\left(\frac{B}{2}\right) = \frac{2}{3}$. Than $\tan\left(\frac{C}{2}\right)$ is equal to :

34. If $\alpha, \beta \quad \alpha \neq \beta$ satisfies the question a cos θ + b sin θ =c, then the value of tan $\left(\frac{\alpha+\beta}{2}\right)$ is :

35. A ray of light passing through the point 1,2 is reflected on the x -axis at a point P and passes through the point 5,3,then the abscissa of a point P is :

36. The equation $4x^2$ -24 x y+11 y² = 0 represents :

a two parallel lines

b two perpendicular lines

c two lines through the origin

d a circle

37. The length of the chord joining the points in which the straight line $\frac{x}{3} + \frac{y}{4} = 1$ cuts the circle $x^2 + y^2 = \frac{169}{25}$ is :

a 1 b 2 c 4 d 8

38. The normal to the parabola y^2 =8x at the point 2,4 meets the parabola against the point :

a -18,-12 b -18,12 c 18,12 d 18, -12

39. If a bar of given length moves with its extremities on two fixed straight lines at right angles, then the locus of any point on bar marked on the bar describes a/an :

a circle	b parabola	
c ellipse	d hyperbola	

40. The straight line x+y= $\sqrt{2}$ p will touch the hyperbola 4x²-9y²=36 if :

a p2= 2 b p ²=5

 $c 5p^2 = 2$ $d 2p^2 = 5$

41. The function $f(x = \frac{1-\sin x + \cos x}{1+\sin x + \cos x}$ is not defined at $x=\pi$. The value of $f(\pi, so that fx is continuous at <math>x=\pi$, is :

a -1/2 b ½ c -1 d 1

42. If fx=sin ² xand the composite function gf(x = |sin x|), then the function gx is equal to :

a $\sqrt{x-1}$ b \sqrt{x} c $\sqrt{x+1}$ d \sqrt{x}

43. Area of the figure bounded by the curves y = |x-1| and y = 3 - |x| is :

a 1 sq. units b 2 sq. units

c 3 sq. units d 4 sq. units

44. Let $x = \left[\frac{a+2b}{a+b}\right]$ and $y = \frac{a}{b}$, where a and b are positive integers. If $y^2 > 2$, then :

a x $^{2}\leq 2$ b x $^{2}< 2$ c x $^{2}>2$ d x $^{2}\geq 2$

45.
$$\int_0^1 tan^{-1} \left(\frac{1}{\frac{2}{\chi-\lambda+1}}\right) dx$$
 is :

a $\log 2$ b $\log 2$ c $\frac{\pi}{2} + \log 2$ d $\frac{\pi}{2} - \log 2$

46. The curves x=log y+e and y= log $\left(\frac{1}{x}\right)$:

a do not meet

- b meet at one point
- c meet at two points

d meet at more than two points

47. $\lim_{x\to 0} \frac{\cos{(\sin x)}-1}{x^2}$ equals :

c 2 d -1/2

48. Let \vec{u} , \vec{b} , \vec{c} be three vectors from $\vec{u} \times \vec{b} \times \vec{c} = \vec{u} \times \vec{b} \times \vec{c}$ if :

a $\vec{b} \times \vec{n} \times \vec{x} \times \vec{p} = (1)$ b $\vec{b} \times \vec{n} \times \vec{p} = \vec{n} \times \vec{n}$ c $\vec{n} \times \vec{n} = \vec{n} \times \vec{p}$ d $\vec{n} \times \vec{p} = \vec{p} \times \vec{n}$

49. If \hat{i},\hat{j},\hat{k} are units vectors and $|\hat{i}\hat{e}| = a$, then the value of

$$|\hat{i} \times |\hat{i}|^{2} + |\hat{j} \times |\hat{i}|^{2} + |\hat{k} \times |\hat{i}|^{2}$$
 is:
a a² b 3a² c 2a² d 4a²

50. If the area above the x-axis bounded by the curves $y = 2^{kx}$ and x = 0 and x = 2 is $\frac{3}{\log 2}$, then the value of k is :

a½ b1 c -1 d2

51. The value of $\int_{a}^{b} \frac{x}{|x|} dx, a < b < 0$ is :

а	- a + b	b	b - a
с	a - b	d	a + b

52. The value of

$$\int_{-2}^{2} \left[p \log \left(\frac{1+x}{1-x} \right) + q \log \left(\frac{1-x}{1+x} \right)^{-2} + r \right] dx \text{ depends on:}$$

- a The value of p
- b The value of q
- c The value of r
- d The value of p and q

53. A curve having the condition that the slope of tengent at some point is two times the slope of the straight line joining the same point to the oigin of co-ordinates, is a/an :

- a circle b ellipse
- c parabola d hyperbola

54. If a is an arbitrary constant, then solution of differential equation

$$\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$$
 is :

a
$$X\sqrt{1-y^2} + y\sqrt{1-x^2} = a$$

b $y\sqrt{1-y^2} + x\sqrt{1-x^2} = a$
c $X\sqrt{1-y^2} - y\sqrt{1-x^2} = a$
d $y\sqrt{1-y^2} - x\sqrt{1-x^2} = a$

55. A particle is moving along the curve $x=a t^2 + b t + c$. If $a c = b^2$, then the particle would be moving with uniform :

a rotation b velocity c acceleration d retardation 56. The solution of the equation $x^2 \frac{d^2 y}{dx^2} = \log x$ when x=1, y=0 and $\frac{dy}{dx} = -1$ is : a $\frac{1}{2}\log x^2 + \log x$ b $\frac{1}{2}(\log x^2 - \log x)$ c $-\frac{1}{2}\log x^2 + \log x$ d $-\frac{1}{2}\log x^2 - \log x$

57. Let the unit vectors \vec{n} and \vec{b} be the perpendicular to each other and the unit vector \vec{r} be inclined at an angle θ to both \vec{n} and \vec{n} . If $\vec{r} = \alpha \vec{n} + \beta \vec{n} + \gamma \vec{n}$, where α, β, γ are scalars, then :

a
$$\alpha = \cot \theta, \beta = \sin \theta, \gamma^2 = \cos 2\theta$$

b $\alpha = \cos \theta, \beta = \cos \theta, \gamma^2 = \cos 2\theta$
c $\alpha = \cos \theta, \beta = \sin \theta, \gamma^2 = \cos 2\theta$
d $\alpha = \sin \theta, \beta = \cos \theta, \gamma^2 = -\cos 2\theta$
58. If $y = \frac{1}{\sqrt{a^2 - b^2}} \cos^{-1} \left[\frac{a \cos(x - a) + b}{\vartheta} \right]$ where $\theta = a + b \cos x - \alpha$, then $\frac{dy}{dx}$ is equal to :
a $1/\theta$ b $2/\theta$
c $1/\theta^2$ d $2/\theta^2$

59. Let K be a set of real number and f:K \rightarrow R such that for all x any y | f(x - f(y | \leq | x-y |⁵. If f(3 = 7, then the value of f(9 is equal to

a5 b7 c9 d11

60. If $f(x = \frac{1}{1-x})$ then the darrivative of the composite function $f[f\{f(x)\}]$ is equal to :

a 0 b ½ c 1 d 2

